607 research outputs found

    Encircling the dark: constraining dark energy via cosmic density in spheres

    Full text link
    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few percent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical collapse dynamics is made available online so as to provide straightforward means of testing the effect of alternative dark energy models and initial power-spectra on the low-redshift matter distribution.Comment: 7 pages, replaced to match the MNRAS accepted versio

    Landslide characterization using P- and S-wave seismic refraction tomography: the importance of elastic moduli

    Get PDF
    In the broad spectrum of natural hazards, landslides in particular are capable of changing the landscape and causing significant human and economic losses. Detailed site investigations form an important component in the landslide risk mitigation and disaster risk reduction process. These investigations usually rely on surface ob- servations, discrete sampling of the subsurface, and laboratory testing to examine properties that are deemed representative of entire slopes. Often this requires extensive interpolations and results in large uncertainties. To compliment and extend these approaches, we present a study from an active landslide in a Lias Group clay slope, North Yorkshire, UK, examining combined P- and S-wave seismic refraction tomography (SRT) as a means of providing subsurface volumetric imaging of geotechnical proxies. The distributions of seismic wave velocities determined fromSRT at the study site indicated zones with higher porosity and fissure density that are interpreted to represent the extent and depth of mass movements and weathered bedrock zones. Distinguishing the lithological units was facilitated by deriving the Poisson's ratio fromthe SRT data as saturated clay and partially saturated sandy silts showed distinctively different Poisson's ra- tios. Shear and Young's moduli derived from the SRT data revealed the weak nature of the materials in active parts of the landslide (i.e. 25 kPa and 100 kPa respectively). The SRT results are consistent with intrusive (i.e. cone penetration tests), laboratory, and additional geoelectrical data from this site. This study shows that SRT forms a cost-effective method that can significantly reduce uncertainties in the conceptual ground model of geotechnical and hydrological conditions that govern landslide dynamics

    Computation of optimized arrays for 3-D electrical imaging surveys

    Get PDF
    3-D electrical resistivity surveys and inversion models are required to accurately resolve structures in areas with very complex geology where 2-D models might suffer from artefacts. Many 3-D surveys use a grid where the number of electrodes along one direction (x) is much greater than in the perpendicular direction (y). Frequently, due to limitations in the number of independent electrodes in the multi-electrode system, the surveys use a roll-along system with a small number of parallel survey lines aligned along the x-direction. The ‘Compare R' array optimization method previously used for 2-D surveys is adapted for such 3-D surveys. Offset versions of the inline arrays used in 2-D surveys are included in the number of possible arrays (the comprehensive data set) to improve the sensitivity to structures in between the lines. The array geometric factor and its relative error are used to filter out potentially unstable arrays in the construction of the comprehensive data set. Comparisons of the conventional (consisting of dipole-dipole and Wenner-Schlumberger arrays) and optimized arrays are made using a synthetic model and experimental measurements in a tank. The tests show that structures located between the lines are better resolved with the optimized arrays. The optimized arrays also have significantly better depth resolution compared to the conventional array

    Assessing climate effects on railway earthworks Using MASW

    Get PDF
    Many parts of the UK’s rail network were constructed in the mid‐19th century long before the advent of modern construction standards. Historic levels of low investment, poor maintenance strategies and the deleterious effects of climate change have resulted in critical elements of the rail network being at significant risk of failure. The majority of failures which have occurred over recent years have been triggered by extreme weather events. Advance assessment and remediation of earthworks is, however, significantly less costly than dealing with failures reactively. It is therefore crucial that appropriate approaches for assessment of the stability of earthworks are developed, so that repair work can be better targeted and failures avoided wherever possible. This extended abstract briefly discusses some preliminary results from an ongoing geophysical research project being carried out in order to study the impact of climate or seasonal weather variations on the stability of a century old railway embankment on the Gloucestershire Warwickshire steam railway line in Southern England

    Piperacillin-Tazobactam versus Other Antibacterial Agents for Treatment of Bloodstream Infections Due to AmpC ÎČ-Lactamase-Producing Enterobacteriaceae

    Get PDF
    In vivo induction of AmpC beta-lactamases produces high-level resistance to many beta-lactam antibiotics in Enterobacteriaceae, often resulting in the need to use carbapenems or cefepime (FEP). The clinical effectiveness of piperacillin-tazobactam (TZP), a weak inducer of AmpC beta-lactamases, is poorly understood. Here, we conducted a case-control study of adult inpatients with bloodstream infections (BSIs) due to Enterobacter, Serratia, or Citrobacter species from 2009 to 2015 to assess outcomes following treatment with TZP compared to FEP or meropenem (MEM). We collected clinical data and screened all isolates for the presence of ampC alleles by PCR. Primary study outcomes were 30-day mortality and persistent bacteremia at \u3e/=72 h from the time of treatment initiation. Of 493 patients with bacteremia, 165 patients met the inclusion criteria, of which 88 were treated with TZP and 77 with FEP or MEM. To minimize differences between covariates, we carried out propensity score matching, which yielded 41 matched pairs. Groups only differed by age, with patients in the TZP group significantly older (P = 0.012). There were no significant differences in 30-day mortality, persistent bacteremia, 7-day mortality, or treatment escalation between the two treatment groups, including in the propensity score-matched cohort. PCR amplification and sequencing of ampC genes revealed the presence of ampC in isolates with cefoxitin MICs below 16 mug/ml, in particular in Serratia spp., and demonstrated that these alleles were highly genetically diverse. Taken together, TZP may be a valuable treatment option for BSIs due to AmpC beta-lactamase-producing Enterobacteriaceae, diminishing the need for broader-spectrum agents. Future studies are needed to validate these findings

    Implementing positivity constraints in 4-D resistivity time-lapse inversion

    Get PDF
    Over the last 25 years 2-D and 3-D resistivity surveys have been used for a wide range of engineering, environmental, hydrological and mineral exploration surveys (Loke et al. 2013). In some surveys, the purpose includes the monitoring of subsurface changes with time (Chambers et al. 2014). The 4-D smoothness-constrained inversion method (Loke et al. 2014) has proved to be a stable and robust method for the inversion of time-lapse data sets. This method inverts the data sets measured at different times simultaneously and it includes a temporal smoothness constraint to ensure that the resistivity changes in a smooth manner with time. In some surveys, such as infiltration experiments (Kuras et al. 2016), it is known that the subsurface resistivity should only decrease (or increase) with time. As the standard 4-D inversion method does not explicitly constrain the direction of the changes with time, this could result in artefacts where an increase in the resistivity is obtained in the inverse model while it is only expected to decrease (or vice versa). In this paper we describe a modification of the 4-D smoothness-constrained inversion method to remove such temporal artefacts

    537Microparticles and exosomes differentially impact on endothelial cell function in coronary artery disease

    Get PDF
    Background and Purpose: Microparticles (MPs) and exosomes are released by cells using different mechanisms. Thus, quantitative as well as qualitative changes of both particle populations, MPs and exosomes, in patients with coronary artery disease (CAD) might reflect an altered activation status of the endothelium, platelets and leukocytes. Moreover, they might exert differential effects on the target organs, such as the endothelium. Yet, alterations in both populations have not been studied side-by-side so far. The aim of the study was to compare the impact of MPs and exosomes from healthy subjects and CAD patients on endothelial cell (EC) functional characteristics. Methods: MPs and exosomes were isolated by stepwise filtration and ultracentrifugation from citrate-plasma and verified by electron microscopy and dynamic light scattering. MP and exosome fractions, as well as the vehicle (PBS), were added to human arterial ECs and EC apoptosis, number, size, capacity for in vitro-reendothelialisation after scratching, expression of adhesion molecules ICAM-1 and VCAM-1 were assessed. In parallel, platelet-, endothelial- and leukocyte-derived MPs were quantified. In a separate sub-study, the same parameters were assessed in plasma of CAD patients undergoing standard medical rehabilitation or an exercise-based cardiac rehabilitation programme. Results: MPs of healthy, but not of CAD patients supported in vitro re-endothelialisation, while exosomes had no influence. Exercise, but not standard rehabilitation improved CAD MP capacity to support in vitro rehabilitation. This was negatively correlated to the number of leukocyte- and endothelial-derived MPs, but not total or platelet MPs. EC number was negatively affected by exposure to CAD MPs. ANCOVA analysis identified disease, but not the particle type as influencing factor. Instead, apoptotic cell death was influenced by particle type, but not by the disease, and was not altered in rehabilitation. Similarly, ICAM-1 and VCAM-1 expression were enhanced on ECs after incubation with exosomes, but not with MPs, with no effect of disease or rehabilitation. Conclusion: MPs and exosomes differentially affect endothelial cell function and underlie differential modulation in disease and rehabilitation. Those findings might in the future help to optimize and monitor cardiovascular therap

    Reprocessed height time series for GPS stations

    Get PDF
    Precise weekly positions of 403 Global Positioning System (GPS) stations located worldwide are obtained by reprocessing GPS data of these stations for the time span from 4 January 1998 until 29 December 2007. The processing algorithms and models used as well as the solution and results obtained are presented. Vertical velocities of 266 GPS stations having a tracking history longer than 2.5 yr are computed; 107 of them are GPS stations located at tide gauges (TIGA observing stations). The vertical velocities calculated in this study are compared with the estimates from the co-located tide gauges and other GPS solutions. The formal errors of the estimated vertical velocities are 0.01–0.80 mm yr−1. The vertical velocities of our solution agree within 1 mm yr−1 with those of the recent solutions (ULR5 and ULR3) of the UniversitĂ© de La Rochelle for about 67–75 per cent of the common stations. Examples of typical behaviour of station height changes are given and interpreted. The derived height time series and vertical motions of continuous GPS at tide gauges stations can be used for correcting the vertical land motion in tide gauge records of sea level changes
    • 

    corecore